python中scipy.stats产生随机数实例讲解

(编辑:jimmy 日期: 2024/12/26 浏览:2)

python的numpy 能生成一定概率分布的随机数,但如果需要更具体的概率密度,累积概率,就要使用scipy.stats。scipy.stats用于统计分析,统计工具和随机过程的概率,各个随机过程的随机数生成器可以从numpy.random中找到。本文介绍python中使用scipy.stats产生随机数的原理及实例。

1、scipy.stats正态分步格式

scipy.stats #生成指定分布

scipy.stats.poisson.rvs(loc=期望, scale=标准差, size=生成随机数的个数) #从泊松分布中生成指定个数的随机数

2、使用说明

norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。

size得到随机数数组的形状参数。

3、scipy.stats使用实例:产生随机数

#1. random number
#np.random.normal(loc=0.0, scale=1.0, size=None)
rv_unif = st.uniform.rvs(size=10)
print(rv_unif)
rv_norm=st.norm.rvs(loc = 5,scale = 1,size =(2,2))
print(rv_norm)
rv_beta=st.beta.rvs(size=10,a=4,b=2)
print(rv_beta)

一句话新闻

高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。