20行代码教你用python给证件照换底色的方法示例

(编辑:jimmy 日期: 2024/12/26 浏览:2)

1.图片来源

该图片来源于百度图片,如果侵权,请联系我删除!图片仅用于知识交流。

20行代码教你用python给证件照换底色的方法示例

2.读取图片并显示

  • imread():读取图片;
  • imshow():展示图片;
  • waitkey():设置窗口等待,如果不设置,窗口会一闪而过;
import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 显示图像
cv2.imshow('img',img)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

效果如下:

20行代码教你用python给证件照换底色的方法示例

3.图片缩放

resize():图片缩放,其中fx和fy表示缩放比例,0.5表示缩放为以前的 一半。

import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)

# 显示图像
cv2.imshow('img',img)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

20行代码教你用python给证件照换底色的方法示例

4.将图片转换为灰度图像

三色图片有RGB三个颜色通道,无法进行腐蚀和膨胀的操作。这个就需要我们将彩色图片转换为hsv灰度图像后,再完成腐蚀和膨胀的操作。

cv2.cvtColor(img,cv2.COLOR_BGR2HSV)可以将彩色图片转化为hsv灰度图片。

import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为二值化图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

# 显示图像
cv2.imshow('hsv',hsv)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

20行代码教你用python给证件照换底色的方法示例

5.将图片进行二值化处理

二值化处理是为了将图片转换为黑白图片。二值化类似于1表示男、2表示女,对于图像的处理我们也需要自定义一个最小值和最大值,这里分别用lower_blue和upper_blue表示

  • lower_blue = np.array([90,70,70])
  • upper_blue = np.array([110,255,255])
  • inRange(hsv, lower_blue, upper_blue)将图片进行二值化操作。
import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为灰度图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
cv2.imshow('hsv',hsv)

# 图片的二值化处理
lower_blue = np.array([90,70,70])
upper_blue = np.array([110,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)


# 显示图像
cv2.imshow('mask',mask)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

20行代码教你用python给证件照换底色的方法示例

缺点:我们观察第三章图片,发现黑色区域有时候会出现一些噪声(白点),这里可能显示的不是很明显,有的图片显示的很明显,这就需要我们进行腐蚀或膨胀。

6.图象的腐蚀和膨胀

上面的图象进行二值化后,出现了一些噪声,我们可以采用腐蚀或膨胀进行图片的处理,观察哪种的处理效果好一些。

  • erode(mask,None,iterations=1)进行腐蚀操作。
  • dilate(erode,None,iterations=1)进行膨胀操作。
import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为灰度图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
cv2.imshow('hsv',hsv)

# 图片的二值化处理
lower_blue=np.array([90,70,70])
upper_blue=np.array([110,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)


#腐蚀膨胀
erode=cv2.erode(mask,None,iterations=1)
cv2.imshow('erode',erode)

dilate=cv2.dilate(erode,None,iterations=1)
cv2.imshow('dilate',dilate)


# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

20行代码教你用python给证件照换底色的方法示例

观察上图:对于这个图片,无论是腐蚀或膨胀,都起到了很好的去图片噪声的操作,我们使用腐蚀后的图片也可以,我们使用膨胀后的图片也可以。

7.遍历每个像素点进行颜色替换

图片是由每一个像素点组成的,我们就是要找到腐蚀后得到图片的,白色底色处的像素点,然后将原图中对应位置处的像素点,替换为红色。

import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为灰度图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
cv2.imshow('hsv',hsv)

# 图片的二值化处理
lower_blue=np.array([90,70,70])
upper_blue=np.array([110,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)


#腐蚀膨胀
erode=cv2.erode(mask,None,iterations=1)
cv2.imshow('erode',erode)

dilate=cv2.dilate(erode,None,iterations=1)
cv2.imshow('dilate',dilate)

#遍历替换
for i in range(rows):
 for j in range(cols):
  if erode[i,j]==255: # 像素点为255表示的是白色,我们就是要将白色处的像素点,替换为红色
   img[i,j]=(0,0,255) # 此处替换颜色,为BGR通道,不是RGB通道
cv2.imshow('res',img)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

效果如下:

20行代码教你用python给证件照换底色的方法示例

一句话新闻

高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。