Pandas中两个dataframe的交集和差集的示例代码

(编辑:jimmy 日期: 2024/12/28 浏览:2)

创建测试数据:

import pandas as pd
import numpy as np
 
#Create a DataFrame
df1 = {
  'Subject':['semester1','semester2','semester3','semester4','semester1',
        'semester2','semester3'],
  'Score':[62,47,55,74,31,77,85]}
 
df2 = {
  'Subject':['semester1','semester2','semester3','semester4'],
  'Score':[90,47,85,74]}
 
 
df1 = pd.DataFrame(df1,columns=['Subject','Score'])
df2 = pd.DataFrame(df2,columns=['Subject','Score'])
 
print(df1)
print(df2)

运行结果:

Pandas中两个dataframe的交集和差集的示例代码

求两个dataframe的交集

intersected_df = pd.merge(df1, df2, how='inner')
print(intersected_df)

Pandas中两个dataframe的交集和差集的示例代码

也可以指定求交集的列:

intersected_df = pd.merge(df1, df2, on=['Subject'], how='inner')
print(intersected_df)

Pandas中两个dataframe的交集和差集的示例代码

求差集

df2-df1:

set_diff_df = pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
print(set_diff_df)

Pandas中两个dataframe的交集和差集的示例代码

df1-df2:

set_diff_df = pd.concat([df1, df2, df2]).drop_duplicates(keep=False)
print(set_diff_df)

Pandas中两个dataframe的交集和差集的示例代码

另一种求差集的方法是:

以df1-df2为例:

df1 = df1.append(df2)
df1 = df1.append(df2)
set_diff_df = df1.drop_duplicates(subset=['Subject', 'Score'],keep=False)
print(set_diff_df)

得到的df1-df2结果是一样的:

Pandas中两个dataframe的交集和差集的示例代码

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。