(编辑:jimmy 日期: 2024/12/29 浏览:2)
霍夫变换是一种检测任何形状的流行技术,可以检测形状,即使它被破坏或扭曲一点点.
一条线可以表示成y = mx + c或参数形式,像ρ=xcosθ+ysinθ,其中ρ是从原点到直线的垂直距离,θ角是由这条垂线和水平轴以逆时针的方向形成的(这个方向取决于你如何表示坐标系统,这种表示法在OpenCV中使用)
OpenCV中的Hough变换
cv.HoughLines()
第一个参数,输入图像应该是一个二值图像,因此在应用hough变换之前应用阈值或使用Canny边缘检测.
第二和第三个参数分别是ρ和θ的精度.
第四个参数是阈值,这意味着它应该被视为一条直线.
记住,选票的数量取决于直线上的点的数量,所以它表示应该检测到的最小长度.
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('img.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray,50,150,apertureSize = 3) lines = cv2.HoughLines(edges,1,np.pi/180,200) for line in lines: rho,theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2) cv2.imshow('show',img) cv2.waitKey()
概率Hough变换
在hough转换中,你可以看到,即使对于一个有两个参数的线,它也需要大量的计算.概率Hough变换是我们所见的Hough变换的一个优化,它并没有把所有的要点都考虑进去,相反,它只需要一个随机子集,对行检测来说足够.
cv2.HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]])
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('img.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) lines = cv2.HoughLinesP(edges, 1, np.pi/180,100, minLineLength=100, maxLineGap=10) for line in lines: x1, y1, x2, y2 = line[0] cv2.line(img, (x1, y1), (x2, y2), (0,255,0), 2) cv2.imshow('show',img) cv2.waitKey()
以上就是python 用opencv实现霍夫线变换的详细内容,更多关于python 实现霍夫线变换的资料请关注其它相关文章!