(编辑:jimmy 日期: 2025/1/2 浏览:2)
Python-opencv+KNN求解数独
最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s。
整体思路大概就是识别出图中数字生成list,然后求解。
输入输出demo
数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示:
经过程序求解后,得到的结果如下图所示:
程序具体流程
程序整体流程如下图所示:
读入图像后,根据求解轮廓信息找到数字所在位置,以及不包含数字的空白位置,提取数字信息通过KNN识别,识别出数字;无数字信息的在list中置0;生成未求解数独list,之后求解数独,将信息在原图中显示出来。
# -*-coding:utf-8-*- import os import cv2 as cv import numpy as np import time #################################################### #寻找数字生成list def find_dig_(img, train_set): if img is None: print("无效的图片!") os._exit(0) return _, thre = cv.threshold(img, 230, 250, cv.THRESH_BINARY_INV) _, contours, hierarchy = cv.findContours(thre, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) sudoku_list = [] boxes = [] for i in range(len(hierarchy[0])): if hierarchy[0][i][3] == 0: # 表示父轮廓为 0 boxes.append(hierarchy[0][i]) # 提取数字 nm = [] for j in range(len(boxes)): # 此处len(boxes)=81 if boxes[j][2] != -1: x, y, w, h = cv.boundingRect(contours[boxes[j][2]]) nm.append([x, y, w, h]) # 在原图中框选各个数字 cropped = img[y:y + h, x:x + w] im = img_pre(cropped) #预处理 AF = incise(im) #切割数字图像 result = identification(train_set, AF, 7) #knn识别 sudoku_list.insert(0, int(result)) #生成list else: sudoku_list.insert(0, 0) if len(sudoku_list) == 81: sudoku_list= np.array(sudoku_list) sudoku_list= sudoku_list.reshape((9, 9)) print("old_sudoku -> \n", sudoku_list) return sudoku_list, contours, hierarchy else: print("无效的图片!") os._exit(0) ###################################################### #KNN算法识别数字 def img_pre(cropped): # 预处理数字图像 im = np.array(cropped) # 转化为二维数组 for i in range(im.shape[0]): # 转化为二值矩阵 for j in range(im.shape[1]): # print(im[i, j]) if im[i, j] != 255: im[i, j] = 1 else: im[i, j] = 0 return im # 提取图片特征 def feature(A): midx = int(A.shape[1] / 2) + 1 midy = int(A.shape[0] / 2) + 1 A1 = A[0:midy, 0:midx].mean() A2 = A[midy:A.shape[0], 0:midx].mean() A3 = A[0:midy, midx:A.shape[1]].mean() A4 = A[midy:A.shape[0], midx:A.shape[1]].mean() A5 = A.mean() AF = [A1, A2, A3, A4, A5] return AF # 切割图片并返回每个子图片特征 def incise(im): # 竖直切割并返回切割的坐标 a = []; b = [] if any(im[:, 0] == 1): a.append(0) for i in range(im.shape[1] - 1): if all(im[:, i] == 0) and any(im[:, i + 1] == 1): a.append(i + 1) elif any(im[:, i] == 1) and all(im[:, i + 1] == 0): b.append(i + 1) if any(im[:, im.shape[1] - 1] == 1): b.append(im.shape[1]) # 水平切割并返回分割图片特征 names = locals(); AF = [] for i in range(len(a)): names['na%s' % i] = im[:, range(a[i], b[i])] if any(names['na%s' % i][0, :] == 1): c = 0 else: for j in range(names['na%s' % i].shape[0]): if j < names['na%s' % i].shape[0] - 1: if all(names['na%s' % i][j, :] == 0) and any(names['na%s' % i][j + 1, :] == 1): c = j break else: c = j if any(names['na%s' % i][names['na%s' % i].shape[0] - 1, :] == 1): d = names['na%s' % i].shape[0] - 1 else: for j in range(names['na%s' % i].shape[0]): if j < names['na%s' % i].shape[0] - 1: if any(names['na%s' % i][j, :] == 1) and all(names['na%s' % i][j + 1, :] == 0): d = j + 1 break else: d = j names['na%s' % i] = names['na%s' % i][range(c, d), :] AF.append(feature(names['na%s' % i])) # 提取特征 for j in names['na%s' % i]: pass return AF # 训练已知图片的特征 def training(): train_set = {} for i in range(9): value = [] for j in range(15): ima = cv.imread('E:/test_image/knn_test/{}/{}.png'.format(i + 1, j + 1), 0) im = img_pre(ima) AF = incise(im) value.append(AF[0]) train_set[i + 1] = value return train_set # 计算两向量的距离 def distance(v1, v2): vector1 = np.array(v1) vector2 = np.array(v2) Vector = (vector1 - vector2) ** 2 distance = Vector.sum() ** 0.5 return distance # 用最近邻算法识别单个数字 def knn(train_set, V, k): key_sort = [11] * k value_sort = [11] * k for key in range(1, 10): for value in train_set[key]: d = distance(V, value) for i in range(k): if d < value_sort[i]: for j in range(k - 2, i - 1, -1): key_sort[j + 1] = key_sort[j] value_sort[j + 1] = value_sort[j] key_sort[i] = key value_sort[i] = d break max_key_count = -1 key_set = set(key_sort) for key in key_set: if max_key_count < key_sort.count(key): max_key_count = key_sort.count(key) max_key = key return max_key # 生成数字 def identification(train_set, AF, k): result = '' for i in AF: key = knn(train_set, i, k) result = result + str(key) return result ###################################################### ###################################################### #求解数独 def get_next(m, x, y): # 获得下一个空白格在数独中的坐标。 :param m 数独矩阵 :param x 空白格行数 :param y 空白格列数 """ for next_y in range(y + 1, 9): # 下一个空白格和当前格在一行的情况 if m[x][next_y] == 0: return x, next_y for next_x in range(x + 1, 9): # 下一个空白格和当前格不在一行的情况 for next_y in range(0, 9): if m[next_x][next_y] == 0: return next_x, next_y return -1, -1 # 若不存在下一个空白格,则返回 -1,-1 def value(m, x, y): # 返回符合"每个横排和竖排以及九宫格内无相同数字"这个条件的有效值。 i, j = x // 3, y // 3 grid = [m[i * 3 + r][j * 3 + c] for r in range(3) for c in range(3)] v = set([x for x in range(1, 10)]) - set(grid) - set(m[x]) - set(list(zip(*m))[y]) return list(v) def start_pos(m): # 返回第一个空白格的位置坐标 for x in range(9): for y in range(9): if m[x][y] == 0: return x, y return False, False # 若数独已完成,则返回 False, False def try_sudoku(m, x, y): # 试着填写数独 for v in value(m, x, y): m[x][y] = v next_x, next_y = get_next(m, x, y) if next_y == -1: # 如果无下一个空白格 return True else: end = try_sudoku(m, next_x, next_y) # 递归 if end: return True m[x][y] = 0 # 在递归的过程中,如果数独没有解开, # 则回溯到上一个空白格 def sudoku_so(m): x, y = start_pos(m) try_sudoku(m, x, y) print("new_sudoku -> \n", m) return m ################################################### # 将结果绘制到原图 def draw_answer(img, contours, hierarchy, new_sudoku_list ): new_sudoku_list = new_sudoku_list .flatten().tolist() for i in range(len(contours)): cnt = contours[i] if hierarchy[0, i, -1] == 0: num = new_soduku_list.pop(-1) if hierarchy[0, i, 2] == -1: x, y, w, h = cv.boundingRect(cnt) cv.putText(img, "%d" % num, (x + 19, y + 56), cv.FONT_HERSHEY_SIMPLEX, 1.8, (0, 0, 255), 2) # 填写数字 cv.imwrite("E:/answer.png", img) if __name__ == '__main__': t1 = time.time() train_set = training() img = cv.imread('E:/test_image/python_test_img/Sudoku.png') img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) sudoku_list, contours, hierarchy = find_dig_(img_gray, train_set) new_sudoku_list = sudoku_so(sudoku_list) draw_answer(img, contours, hierarchy, new_sudoku_list ) print("time :",time.time()-t1)
PS:
使用KNN算法需要创建训练集,数独中共涉及9个数字,“1,2,3,4,5,6,7,8,9”各15幅图放入文件夹中,如下图所示。