使用python-cv2实现Harr+Adaboost人脸识别的示例

(编辑:jimmy 日期: 2025/1/4 浏览:2)

Haar特征

哈尔特征使用检测窗口中指定位置的相邻矩形,计算每一个矩形的像素和并取其差值。然后用这些差值来对图像的子区域进行分类。

haar特征模板有以下几种:

使用python-cv2实现Harr+Adaboost人脸识别的示例

以第一个haar特征模板为例

使用python-cv2实现Harr+Adaboost人脸识别的示例

计算方式

1.特征 = 白色 - 黑色(用白色区域的像素之和减去黑色区域的象征之和)

2.特征 = 整个区域 * 权重 + 黑色 * 权重

使用haar模板处理图像

从图像的起点开始,利用haar模板从左往右遍历,从上往下遍历,并设置步长,同时考虑图像大小和模板大小的信息

假如我们现在有一个 1080 * 720 大小的图像,10*10 的haar模板,并且步长为2,那么我我们所需要的的计算量为: (1080 / 2 * 720 / 2) * 100 * 模板数量 * 缩放 约等于50-100亿,计算量太大。

积分图

使用积分图可大量减少运算时间,实际上就是运用了前缀和的原理

使用python-cv2实现Harr+Adaboost人脸识别的示例

Adaboost分类器

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。

算法流程

该算法其实是一个简单的弱分类算法提升过程,这个过程通过不断的训练,可以提高对数据的分类能力。整个过程如下所示:

1. 先通过对N个训练样本的学习得到第一个弱分类器;
2. 将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器 ;
3. 将1和2都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器;
4. 最终经过提升的强分类器。即某个数据被分为哪一类要由各分类器权值决定。

我们需要从官网下载俩个Adaboost分类器文件,分别是人脸和眼睛的分类器:
下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades

使用python-cv2实现Harr+Adaboost人脸识别的示例

使用python-cv2实现Harr+Adaboost人脸识别的示例

代码实现

实现人脸识别的基本步骤:

1.加载文件和图片
2.进行灰度处理
3.得到haar特征
4.检测人脸
5.进行标记

我们使用cv2.CascadeClassifier()来加载我们下载好的分类器。

然后我们使用detectMultiScale()方法来得到识别结果

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 1.加载文件和图片 2.进行灰度处理 3.得到haar特征 4.检测人脸 5.标记

face_xml = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_xml = cv2.CascadeClassifier('haarcascade_eye.xml')
img = cv2.imread('img.png')
cv2.imshow('img', img)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 1.灰色图像 2.缩放系数 3.目标大小
faces = face_xml.detectMultiScale(gray, 1.3, 5)
print('face = ',len(faces))
print(faces)
#绘制人脸,为人脸画方框
for (x,y,w,h) in faces:
  cv2.rectangle(img, (x,y), (x + w, y + h), (255,0,0), 2)
  roi_face = gray[y:y+h,x:x+w]
  roi_color = img[y:y+h,x:x+w]
  eyes = eye_xml.detectMultiScale(roi_face)
  print('eyes = ',len(eyes))
  for (ex,ey,ew,eh) in eyes:
    cv2.rectangle(roi_color, (ex,ey),(ex + ew, ey + eh), (0,255,0), 2)
cv2.imshow('dat', img)
cv2.waitKey(0)
face = 1
[[133 82 94 94]]
eyes = 2

使用python-cv2实现Harr+Adaboost人脸识别的示例

使用python-cv2实现Harr+Adaboost人脸识别的示例

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。