Python过滤掉numpy.array中非nan数据实例

(编辑:jimmy 日期: 2024/11/19 浏览:2)

代码

需要先导入pandas

arr的数据类型为一维的np.array

import pandas as pd
arr[~pd.isnull(arr)]

补充知识:python numpy.mean() axis参数使用方法【sum(axis=*)是求和,mean(axis=*)是求平均值】

如下所示:

import numpy as np
X = np.array([[1, 2], [4, 5], [7, 8]])
print(np.mean(X, axis=0, keepdims=True))
print('*'*50)
print(np.mean(X, axis=1, keepdims=True))
print('*'*50)
print(X.mean(axis=0))
print('*'*50)
print(X.mean(axis=1))

[[4. 5.]]

[[1.5]
[4.5]
[7.5]]

[4. 5.]

[1.5 4.5 7.5]

20200221

np.mean()还可计算列表元素均值:

import numpy as np
list1=[1,2,3,4,5]
list2=[[1,2,3],[4,5,6]]
print(np.mean(list1))
print(np.mean(list2))

结果:

3.0
3.5

以上这篇Python过滤掉numpy.array中非nan数据实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?