(编辑:jimmy 日期: 2024/11/15 浏览:2)
最近在看《深度学习:基于Keras的Python实践(魏贞原)》这本书,书中8.3创建了一个Scikit-Learn的Pipeline,首先标准化数据集,然后创建和评估基线神经网络模型,代码如下:
# 数据正态化,改进算法 steps = [] steps.append(('standardize', StandardScaler())) steps.append(('mlp', model)) pipeline = Pipeline(steps) kfold = KFold(n_splits=10, shuffle=True, random_state=seed) results = cross_val_score(pipeline, x, Y, cv=kfold) print('Standardize: %.2f (%.2f) MSE' % (results.mean(), results.std()))
而PipeLine是什么来的呢?
Pipelines and composite estimators(官方文档)
转换器通常与分类器,回归器或其他估计器组合在一起,以构建复合估计器。最常用的工具是Pipeline。Pipeline通常与FeatureUnion结合使用,FeatureUnion将转换器的输出连接到一个复合特征空间中。 TransformedTargetRegressor处理转换目标(即对数变换y)。相反,Pipelines仅转换观察到的数据(X)。
Pipeline可用于将多个估计器链接为一个。这很有用,因为在处理数据时通常会有固定的步骤顺序,例如特征选择,归一化和分类。Pipeline在这里有多种用途:
Pipeline是使用 (key,value) 对的列表构建的,其中key是包含要提供此步骤名称的字符串,而value是一个估计器对象:
from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.decomposition import PCA estimators = [('reduce_dim', PCA()), ('clf', SVC())] pipe = Pipeline(estimators) pipe
output:
函数make_pipeline是构建pipelines的简写;它接受不同数量的估计器,并返回一个pipeline。它不需要也不允许命名估计器。而是将其名称自动设置为其类型的小写字母:
from sklearn.pipeline import make_pipeline from sklearn.naive_bayes import MultinomialNB from sklearn.preprocessing import Binarizer make_pipeline(Binarizer(), MultinomialNB())
output:
总结