Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例

(编辑:jimmy 日期: 2024/11/12 浏览:2)

关于非对称加密算法我就不过多介绍了,本文着重于python3对RSA算法的实现。

from Crypto.PublicKey import RSA
import Crypto.Signature.PKCS1_v1_5 as sign_PKCS1_v1_5 #用于签名/验签
from Crypto.Cipher import PKCS1_v1_5 #用于加密
from Crypto import Random
from Crypto import Hash
 
 
x = RSA.generate(2048)
# y = RSA.generate(2048, Random.new().read)  #也可以使用伪随机数来辅助生成
s_key = x.export_key() #私钥
g_key = x.publickey().export_key() #公钥
# print(s_key,'\n111\n',g_key)
 
 
 
#写入文件--1
# with open("c.pem", "wb") as x:
#   x.write(s_key)
# with open("d.pem", "wb") as x:
#   x.write(g_key)
 
 
#从文件导入密钥 -- 通过私钥生成公钥 (公钥不会变 -- 用于只知道私钥的情况)--2
# with open('c.pem','rb')as x:
#   s_key = RSA.importKey(x.read())
# # new_g_key = s_key.publickey().export_key()
# # print(new_g_key)
#
# cert = s_key.export_key("DER") #生成证书 -- 它和私钥是唯一对应的
# print(cert)
 
 
#实现RSA 非对称加解密
my_private_key = s_key # 私钥
my_public_key = g_key # 公钥
 
 
############ 使用公钥 - 私钥对信息进行"加密" + "解密" ##############
'''
作用:对信息进行公钥加密,私钥解密。
应用场景:
  A想要加密传输一份数据给B,担心使用对称加密算法易被他人破解(密钥只有一份,一旦泄露,则数据泄露),故使用非对称加密。
  信息接收方可以生成自己的秘钥对,即公私钥各一个,然后将公钥发给他人,私钥自己保留。
  
  A使用公钥加密数据,然后将加密后的密文发送给B,B再使用自己的私钥进行解密,这样即使A的公钥和密文均被第三方得到,
  第三方也要知晓私钥和加密算法才能解密密文,大大降低数据泄露风险。
'''
 
def encrypt_with_rsa(plain_text):
 
  #先公钥加密
  cipher_pub_obj = PKCS1_v1_5.new(RSA.importKey(my_public_key))
  _secret_byte_obj = cipher_pub_obj.encrypt(plain_text.encode())
 
  return _secret_byte_obj
 
def decrypt_with_rsa(_secret_byte_obj):
 
  #后私钥解密
  cipher_pri_obj = PKCS1_v1_5.new(RSA.importKey(my_private_key))
  _byte_obj = cipher_pri_obj.decrypt(_secret_byte_obj, Random.new().read)
  plain_text = _byte_obj.decode()
 
  return plain_text
 
def executer_without_signature():
 
  #加解密验证
  text = "I love CA!"
  assert text == decrypt_with_rsa(encrypt_with_rsa(text))
  print("rsa test success!")
 
 
 
############ 使用私钥 - 公钥对信息进行"签名" + "验签" ##############
'''
作用:对解密后的文件的完整性、真实性进行验证(繁琐但更加保险的做法,很少用到)
应用场景:
  A有一私密文件欲加密后发送给B,又担心因各种原因导致B收到并解密后的文件并非完整、真实的原文件(可能被篡改或丢失一部分),
  所以A在发送前对原文件进行签名,将[签名和密文]一同发送给B让B收到后用做一下文件的[解密 + 验签],
  均通过后-方可证明收到的原文件的真实性、完整性。
  
'''
def to_sign_with_private_key(plain_text):
 
  #私钥签名
  signer_pri_obj = sign_PKCS1_v1_5.new(RSA.importKey(my_private_key))
  rand_hash = Hash.SHA256.new()
  rand_hash.update(plain_text.encode())
  signature = signer_pri_obj.sign(rand_hash)
 
  return signature
 
def to_verify_with_public_key(signature, plain_text):
 
  #公钥验签
  verifier = sign_PKCS1_v1_5.new(RSA.importKey(my_public_key))
  _rand_hash = Hash.SHA256.new()
  _rand_hash.update(plain_text.encode())
  verify = verifier.verify(_rand_hash, signature)
 
  return verify #true / false
 
def executer_with_signature():
 
  #签名/验签
  text = "I love CA!"
  assert to_verify_with_public_key(to_sign_with_private_key(text), text)
  print("rsa Signature verified!")
 
 
if __name__ == '__main__' :
 
  executer_without_signature() # 只加密不签名
 
  executer_with_signature() #只签名不加密
 
  #二者结合食用更佳
'''
如果是加密的同时又要签名,这个时候稍微有点复杂。
1、发送者和接收者需要各持有一对公私钥,也就是4个钥匙。
2、接收者的公私钥用于机密信息的加解密
3、发送者的公私钥用于机密信息的签名/验签
4、接收者和发送者都要提前将各自的[公钥]告知对方。
'''

更多关于Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例请查看下面的相关链接

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?