python opencv根据颜色进行目标检测的方法示例

(编辑:jimmy 日期: 2024/11/12 浏览:2)

颜色目标检测就是根据物体的颜色快速进行目标定位。使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标。

建立项目colordetect.py,代码如下:

#! /usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import cv2

def colorDetect():
 image = cv2.imread('./1.png')
 # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值
 boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
 ]

 for lower, upper in boundaries:
 lower = np.array(lower, dtype='uint8')
 upper = np.array(upper, dtype='uint8')
 # 低于lower和高于upper的像素为黑色,lower-upper之间的像素为白色
 mask = cv2.inRange(image, lower, upper)
 # 利用蒙版,进行图像的逻辑与运算
 output = cv2.bitwise_and(image, image, mask=mask)

 cv2.imshow('image', np.hstack([image, output]))
 cv2.waitKey(0)
 cv2.destroyAllWindows()

def main():
 colorDetect()

if __name__ == "__main__":
 main()

定义RGB颜色列表:

boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
]

该部分([17, 15, 100], [50, 56, 200]),表示图像像素R>=100, B>=15, G>=15和R<=200, B<=56, G<=50的像素将视为红色。

执行代码,结果如下:

python opencv根据颜色进行目标检测的方法示例

总结

要检测图像中颜色,第一件事要做的就是定义像素值的上限和下限。不同的颜色空间具有不同上下限值,定义了上限和下限后,就可以调用cv2.inRange方法返回一个mask,将该mask与图像进行逻辑与bitwise_and就可以得到该图像。

参考资料
https://www.pyimagesearch.com

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?