(编辑:jimmy 日期: 2024/11/12 浏览:2)
sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接:
http://docs.sympy.org/latest/modules/vector/index.html
sympy中计算梯度、散度和旋度主要有两种方式:
一个是使用"htmlcode">
## 1 gradient C = CoordSys3D('C') delop = Del() # nabla算子 # 标量场 f = x**2*y-xy f = C.x**2*C.y - C.x*C.y res = delop.gradient(f, doit=True) # 使用nabla算子 # res = delop(f).doit() res = gradient(f) # 直接使用gradient print(res) # (2*C.x*C.y - C.y)*C.i + (C.x**2 - C.x)*C.j
(2)计算散度
## divergence C = CoordSys3D('C') delop = Del() # nabla算子 # 向量场 f = x**2*y*i-xy*j f = C.x**2*C.y*C.i - C.x*C.y*C.j res = delop.dot(f, doit=True) # res = divergence(f) print(res) # 2*C.x*C.y - C.x,即2xy-x,向量场的散度是标量
(3)计算旋度
## curl C = CoordSys3D('C') delop = Del() # nabla算子 # 向量场 f = x**2*y*i-xy*j f = C.x**2*C.y*C.i - C.x*C.y*C.j res = delop.cross(f, doit=True) # res = curl(f) print(res) # (-C.x**2 - C.y)*C.k,即(-x**2-y)*k,向量场的旋度是向量
以上这篇Python Sympy计算梯度、散度和旋度的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。