pandas 使用均值填充缺失值列的小技巧分享

(编辑:jimmy 日期: 2024/11/17 浏览:2)

pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样:

for column in list(df.columns[df.isnull().sum() > 0]):
  mean_val = df[column].mean()
  df[column].fillna(mean_val, inplace=True)

# -------代码分解-------
# 判断哪些列有缺失值,得到series对象
df.isnull().sum() > 0
# output
contributors           True
coordinates            True
created_at            False
display_text_range        False
entities             False
extended_entities         True
favorite_count          False
favorited            False
full_text            False
geo                True
id                False
id_str              False
...

# 根据上一步结果,筛选需要填充的列
df.columns[df.isnull().sum() > 0]
# output
Index(['contributors', 'coordinates', 'extended_entities', 'geo',
    'in_reply_to_screen_name', 'in_reply_to_status_id',
    'in_reply_to_status_id_str', 'in_reply_to_user_id',
    'in_reply_to_user_id_str', 'place', 'possibly_sensitive',
    'possibly_sensitive_appealable', 'quoted_status', 'quoted_status_id',
    'quoted_status_id_str', 'retweeted_status'],
   dtype='object')

以上这篇pandas 使用均值填充缺失值列的小技巧分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。