python画出三角形外接圆和内切圆的方法

(编辑:jimmy 日期: 2024/11/19 浏览:2)

刚看了《最强大脑》中英对决,其中难度最大的项目需要选手先脑补泰森多边形,再找出完全相同的两个泰森多边形。在惊呆且感叹自身头脑愚笨的同时,不免手痒想要借助电脑弄个图出来看看,闲来无事吹吹牛也是极好的。

今天先来画画外接圆和内切圆,留个大坑后面来填。

外接圆圆心:三角形垂直平分线的交点。
内切圆圆心:三角形角平分线的交点。

有了思路,就可以用万能的python来计算了

import matplotlib.pyplot as plt
from scipy.linalg import solve
import numpy as np
from matplotlib.patches import Circle

'''
求三角形外接圆和内切圆
'''
# 画个三角形
def plot_triangle(A, B, C):
  x = [A[0], B[0], C[0], A[0]]
  y = [A[1], B[1], C[1], A[1]]

  ax = plt.gca()
  ax.plot(x, y, linewidth=2)

# 画个圆
def draw_circle(x, y, r):
  ax = plt.gca()
  cir = Circle(xy=(x, y), radius=r, alpha=0.5)
  ax.add_patch(cir)
  ax.plot()

# 外接圆
def get_outer_circle(A, B, C):
  xa, ya = A[0], A[1]
  xb, yb = B[0], B[1]
  xc, yc = C[0], C[1]

  # 两条边的中点
  x1, y1 = (xa + xb) / 2.0, (ya + yb) / 2.0
  x2, y2 = (xb + xc) / 2.0, (yb + yc) / 2.0

  # 两条线的斜率
  ka = (yb - ya) / (xb - xa) if xb != xa else None
  kb = (yc - yb) / (xc - xb) if xc != xb else None

  alpha = np.arctan(ka) if ka != None else np.pi / 2
  beta = np.arctan(kb) if kb != None else np.pi / 2

  # 两条垂直平分线的斜率
  k1 = np.tan(alpha + np.pi / 2)
  k2 = np.tan(beta + np.pi / 2)

  # 圆心
  y, x = solve([[1.0, -k1], [1.0, -k2]], [y1 - k1 * x1, y2 - k2 * x2])
  # 半径
  r1 = np.sqrt((x - xa)**2 + (y - ya)**2)

  return(x, y, r1)

# 内切圆
def get_inner_circle(A, B, C):
  xa, ya = A[0], A[1]
  xb, yb = B[0], B[1]
  xc, yc = C[0], C[1]

  ka = (yb - ya) / (xb - xa) if xb != xa else None
  kb = (yc - yb) / (xc - xb) if xc != xb else None

  alpha = np.arctan(ka) if ka != None else np.pi / 2
  beta = np.arctan(kb) if kb != None else np.pi / 2

  a = np.sqrt((xb - xc)**2 + (yb - yc)**2)
  b = np.sqrt((xa - xc)**2 + (ya - yc)**2)
  c = np.sqrt((xa - xb)**2 + (ya - yb)**2)

  ang_a = np.arccos((b**2 + c**2 - a**2) / (2 * b * c))
  ang_b = np.arccos((a**2 + c**2 - b**2) / (2 * a * c))

  # 两条角平分线的斜率
  k1 = np.tan(alpha + ang_a / 2)
  k2 = np.tan(beta + ang_b / 2)
  kv = np.tan(alpha + np.pi / 2)

  # 求圆心
  y, x = solve([[1.0, -k1], [1.0, -k2]], [ya - k1 * xa, yb - k2 * xb])
  ym, xm = solve([[1.0, -ka], [1.0, -kv]], [ya - ka * xa, y - kv * x])
  r1 = np.sqrt((x - xm)**2 + (y - ym)**2)

  return(x, y, r1)

if __name__ == '__main__':
  A = (1., 1.)
  B = (5., 2.)
  C = (5., 5.)

  plt.axis('equal')
  plt.axis('off')
  plot_triangle(A, B, C)

  x, y, r1 = get_outer_circle(A, B, C)
  plt.plot(x, y, 'ro')
  draw_circle(x, y, r1)

  x_inner, y_inner, r_inner = get_inner_circle(A, B, C)
  plt.plot(x_inner, y_inner, 'ro')
  draw_circle(x_inner, y_inner, r_inner)

  plt.show()

下面看看两个三角形的结果:

python画出三角形外接圆和内切圆的方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?