Python multiprocessing.Manager介绍和实例(进程间共享数据)

(编辑:jimmy 日期: 2024/11/12 浏览:2)

Python中进程间共享数据,处理基本的queue,pipe和value+array外,还提供了更高层次的封装。使用multiprocessing.Manager可以简单地使用这些高级接口。

Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问。从而达到多进程间数据通信且安全。

Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。

1) Manager的dict,list使用

复制代码 代码如下:
import multiprocessing
import time

def worker(d, key, value):
    d[key] = value

if __name__ == '__main__':
    mgr = multiprocessing.Manager()
    d = mgr.dict()
    jobs = [ multiprocessing.Process(target=worker, args=(d, i, i*2))
             for i in range(10)
             ]
    for j in jobs:
        j.start()
    for j in jobs:
        j.join()
    print ('Results:' )
    for key, value in enumerate(dict(d)):
        print("%s=%s" % (key, value))
       
# the output is :
# Results:
# 0=0
# 1=1
# 2=2
# 3=3
# 4=4
# 5=5
# 6=6
# 7=7
# 8=8
# 9=9

上面为manager.dict的使用实例。

2)namespace对象没有公共的方法,但是有可写的属性。

然而当使用manager返回的namespace的proxy的时候,_属性值属于proxy,跟原来的namespace没有关系。
复制代码 代码如下:
> manager = multiprocessing.Manager()
> Global = manager.Namespace()
> Global.x = 10
> Global.y = 'hello'
> Global._z = 12.3    # this is an attribute of the proxy
> print(Global)
Namespace(x=10, y='hello')

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?